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Introduction 

Real-world studies have become indispensable in complementing the 

evidence generated by randomized controlled trials (RCTs). RCTs are 

widely acknowledged for their ability to provide robust proof of 

medical intervention safety and efficacy. RCTs successfully mitigate 

bias and confounding by employing techniques like randomization 

and stringent patient selection criteria, thus establishing high internal 

validity. However, this often comes at the cost of external validity, as 

the trial populations may significantly differ from the broader patient 

populations encountered in real-world clinical practice. In response, 

real-world evidence (RWE) has emerged as a crucial means of 

assessing the practical effectiveness of medical interventions in a 

more diverse and representative patient population. RCTs' strict 

exclusion criteria frequently exclude most patients seen in routine 

clinical care, making RWE vital for understanding treatment effects 

in real-world, heterogeneous clinical settings, where patients often 

present with multiple comorbidities. Data from real-world studies can 

inform payers, clinicians, and patients' decisions regarding 

interventions outside the controlled research environment. It provides 

essential insights into drugs' long-term safety and effectiveness within 

larger patient populations, their economic performance in real-world 

 

 

scenarios, and their comparative effectiveness when measured against 

alternative treatments [1-3]. 

Recent enhancements in the methodological rigor of real-world 

studies and the increased availability of higher-quality, 

comprehensive datasets have amplified the importance of findings 

from these investigations. Recognizing this, regulatory bodies like the 

US Food and Drug Administration (FDA) and the European 

Medicines Agency (EMA) have acknowledged the significance of 

real-world data in supporting marketed products and contributing to 

product development and monitoring throughout their lifecycle. 

Moreover, national and regional healthcare bodies, such as the UK's 

National Institute for Health and Care Excellence (NICE) and 

Germany's Institute for Quality and Efficiency in Health Care 

(IQWiG), utilize real-world data for guiding clinical decision-making 

[4,5]. Payers also increasingly rely on such data to inform decisions, 

particularly in utilization management and formulary placement. 

Transparency in real-world evidence in clinical 

therapies: 

Given the growing number of real-world studies, more clinical 

evidence is now accessible for guiding treatment decisions and 

assessing the consequences of off-label usage. This review aims to 
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explore the impact of real-world clinical data and how its 

interpretation can assist clinicians in making informed decisions by 

appropriately assessing the clinical evidence available. Real-world 

data, as defined by the Association of the British Pharmaceutical 

Industry, refers to data collected outside the controlled confines of 

traditional randomized controlled trials (RCTs) with the aim of 

assessing real-world scenarios in clinical practice [6]. Real-world 

studies encompass both retrospective and prospective investigations, 

and when they incorporate prospective randomization, they are 

termed "pragmatic trial design" studies [7]. The primary distinction 

between RCTs and real-world studies can be attributed to (a) the 

research setting and (b) the source of evidence [8]. RCTs are typically 

conducted within a tightly controlled framework involving precisely 

defined patient populations. Patient selection frequently hinges on 

meeting stringent eligibility criteria for inclusion and exclusion. 

Participants in RCTs adhere to strict quality standards, with 

comprehensive monitoring, detailed case-report forms designed to 

capture additional information not found in regular medical records, 

and meticulous oversight by research personnel responsible for 

ensuring protocol adherence (figure 1). 

 

Figure 1: Application of real-world evidence in decision-making for natural compound delivery 
 

 

In contrast, real-world evidence is often derived from diverse sources 

beyond the conventional clinical research setting. These sources may 

include non-research healthcare facilities, electronic health records 

(EHRs), patient registries, and administrative claims databases (often 

acquired from integrated healthcare delivery systems). Notably, real- 

world evidence can also be employed retrospectively as external 

control arms for RCTs to offer comparative efficacy data [9-12]. This 

article draws upon previous studies and does not involve research 

with human participants or animals performed by authors. A 

burgeoning source of real-world data is found in "pragmatic trials." 

These trials aim to demonstrate an intervention's practical, real-world 

effectiveness across a broad patient population [13,14]. They employ 

a prospective, randomized design and collect data on various health 

outcomes within a diverse and heterogeneous population, mirroring 

clinical practice [15–17]. Pragmatic trials unfold within everyday 

practice settings and include a population pertinent to the 

intervention. A control group receiving an acceptable standard of care 

(or placebo) is also incorporated, focusing on significant outcomes for 

the concerned population [18]. Pragmatic trials intentionally refrain 

from controlling aspects of care other than the intervention under 

study. This means clinicians can exercise their clinical judgment 

when selecting other medications [19]. These trials might center on 

specific patient types or treatments, with study coordinators choosing 

patients, clinicians, and clinical practices to enhance external validity, 

i.e., to ensure the results apply to routine practice [20]. 

Consequently, pragmatic trials yield data about various clinically 

pertinent real-world factors, including different treatments, patient- 

and clinician-friendly dosing and treatment protocols, and cost- 

effectiveness. This information, in turn, contributes to addressing 

practice- and policy-relevant matters and prioritizes the outcomes 

most important to patients. It also takes into account real-world 

treatment adherence and compliance, directly assessing the impact of 

a medication or treatment regimen on patients. 
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Real-World Research: Enhancing General 

Applicability: 

The natural progression of diabetes, particularly type 2 diabetes, 

poses challenges for researchers conducting Real-World Data (RWD) 

studies on diabetes treatment. One of the crucial pitfalls is the 

inadequate consideration of the heterogeneity in diabetes status. 

Diabetes is often treated as a binary condition, but this simplistic 

approach fails to capture the intricate aspects of the disease. Patients 

with diabetes share standard features but can be grouped into 

subcategories based on changing disease characteristics. Moreover, 

these characteristics can evolve differently in various patients, 

causing the definition of an 'average' patient to change over time. The 

wide range of available diabetes treatments, which can be used alone 

or in combination, further complicates the categorization and 

comparison of patients. Just as diabetes is dynamic, so are its 

treatments. A longitudinal perspective and analytical approaches 

respecting this temporal aspect are necessary [21-23]. Mistaken 

analytical approaches in dealing with the complexities of diabetes 

have led to incorrect inferences due to immortal time and associated 

bias in some instances. Eternal time is a period in which a patient, by 

definition, remains event-free. It often results from using future 

information to characterize a patient's status at study enrollment. This 

can create a group of 'immortal' patients who must have survived to 

meet the definition. Immortal time bias can affect either the treated 

group, the comparison group, or both. Since RWD often covers the 

entire study timeframe, it's easy to inadvertently introduce immortal 

time without the safeguards present in a Randomized Controlled Trial 

(RCT). Researchers using RWD must be aware of eternal time and 

take measures to prevent its introduction. Although it may be 

tempting to use future information to categorize patients when 

studying a condition like diabetes that changes over time, it opens the 

door to time-related biases. 

In addition to the unique challenges posed by diabetes, Real-World 

Data (RWD) studies must grapple with issues of selection bias and 

information bias. Selection bias involves the characteristics of 

patients receiving the treatment under investigation and how they 

differ from the patients serving as comparisons. Unlike Randomized 

Controlled Trials (RCTs), where treatments are randomly assigned, 

the nonrandom allocation of treatments in RWD can introduce 

numerous differences between compared groups, collectively known 

as selection bias. These disparities can range from evident factors like 

age or gender to more clinical attributes such as comorbidities or 

concurrent medications. Furthermore, diabetes features can vary 

across comparison groups, including the duration of diabetes, 

laboratory results, or a history of hypoglycemia episodes. Yet, 

particular distinctions may remain hidden, like the treating physician's 

perception of the patient's likely adherence to treatment or monitoring. 

In protocol-driven RCTs, adherence and outcome documentation 

occur systematically at standard intervals after patient identification 

and treatment assignment [24-28]. 

In contrast, RWD-based outcomes are identified, monitored, and 

documented based on the discretion of the treating physician(s). This 

can lead to the preferential documentation of more severe outcomes, 

as they involve interactions with the healthcare system, which are 

then recorded within the RWD. Many outcomes relevant to patients 

with diabetes encompass subtle changes in the spectrum of various 

indicators, including hypoglycemia, blood glucose, glycated 

hemoglobin A1C (HbA1C), renal function, and different stages of 

end-organ damage. Unless specific inquiries are made of patients or 

specific laboratory tests are ordered, these outcomes may remain 

unascertained. This article aims to illustrate how RWD can replicate 

and even extend Randomized Controlled Trial (RCT) evidence in the 

context of type 2 diabetes [29]. 

Natural Products in Diabetes Mellitus: A Systematic 

Review of RCT: 

This review critically assesses a study that explores the role of natural 

products in managing the increasingly prevalent disease, type 2 

diabetes mellitus (T2D) [30]. Upon an extensive review of the 

existing literature, it becomes evident that the concept of "natural 

products" lacks a precise boundary, as the line between what is 

considered natural and synthetic often blurs, owing to the ability to 

synthesize products from natural extracts. For instance, metformin is 

derived from a compound found in the French lilac, Galega officinalis 

[31], while insulin can be synthesized from bacteria like E. coli, 

involving the transformation of a human insulin analog [32]. This 

ambiguity makes it challenging to narrow down specific keywords for 

an accurate search. The reviewed studies do not offer sufficient 

scientific evidence to warrant the widespread application of the 

investigated methods to the general population. More research is 

indispensable to assess the potential short-term and long-term side 

effects of these natural product-based treatments at both individual 

and collective levels [33-38]. Some studies [39-45] emphasize the 

need for further research to substantiate the beneficial effects 

associated with natural products. 

These studies reveal that natural products can deliver more than one 

favorable outcome, extending beyond their insulin-sensitizing and 

hypoglycemic properties to include anti-inflammatory, antioxidant, 

and cholesterol-lowering effects [46,47]. For instance, a study by 

researchers involving Iranian propolis collected from beehives 

demonstrated many positive impacts on T2D patients. These results 

hint at the promise of long-term studies in unlocking the full potential 

of natural product-based treatments. Furthermore, studies like the one 

exploring insulin (SAR-Asp) highlight its effective glycemic control, 

which is nearly equivalent to various insulin options available on the 

market [48]. It is imperative to emphasize the importance of 

prolonged research to evaluate the substantial impact of this insulin 

comprehensively. Another study proposes the insulin-sensitizing 

effect of Scutellaria baicalensis (SB) as a complement to metformin 

in treating type 2 diabetic patients. 
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Additionally, it suggests that SB can enhance glucose metabolism by 

modulating the gut microbiota in patients with T2D, indicating its 

therapeutic potential [49]. This review encountered particular 

challenges when determining the inclusion of specific studies. As 

previously mentioned, the blurriness between the concepts of natural 

and synthetic products and the fine line between treatment and patient 

improvement posed complications. Moreover, many studies 

predominantly focused on the adjuvant role of natural products 

alongside conventional medications, making it difficult to establish 

the distinct benefits of these natural compounds. Nevertheless, it can 

be inferred that as an adjunct to metformin, several natural products 

such as Ginkgo biloba extract, pinitol, propolis, live probiotic L. 

Reuteri ADR-1 and heat-killed probiotic L. reuteri ADR-3, mixed 

berries, a Chinese plant extract, and resveratrol, hold promise in the 

treatment of T2D, offering distinct advantages when compared to 

metformin therapy in isolation [49-53]. 

The examined studies have elucidated a strong connection between 

the diversity of microorganisms within the gut microbiota and the 

host's overall functioning and metabolism. Additionally, they have 

identified certain microorganisms that exhibit specific effects [54- 

58]. Notably, the investigations conducted by some researchers [59- 

64] present compelling evidence for the potential therapeutic 

advantages of enhancing the diversity and specific species within the 

intestinal microbiota in treating type 2 diabetes (T2D). This 

underscores the intestinal microbiota's potential as a promising target 

for managing this condition. Of particular interest is the in-depth 

exploration of the benefits associated with an increased abundance of 

butyrate-producing species, as well as the presence of Blautia spp. 

and Faecalibacterium spp., as these microorganisms have 

demonstrated a positive impact on carbohydrate and lipid 

homeostasis [65]. However, it's essential to acknowledge that not all 

studies reported beneficial effects in treating T2D, as some indicated 

no significant advantages [66-71]. In summary, the collective 

findings from the reviewed studies suggest that treatments and 

protocols employing natural products hold the most remarkable 

potential for improving insulin resistance in study subjects [72-76]. 

These interventions also exhibit a consistent positive influence on 

various biochemical parameters related to glycosylated hemoglobin, 

positively impact overall lipid profiles, and lead to a reduction in pre- 

prandial blood glucose levels. 

Exclusion criteria in Randomized Controlled Trials (RCTs) might 

exclude a considerable portion of patients encountered in real-world 

scenarios. As previously indicated, individuals excluded from RCTs 

tend to be older, exhibit more medical comorbidities, and grapple with 

more complex social and demographic challenges than those included 

in these trials. Real-world studies offer the potential to gauge whether 

outcomes observed in RCTs hold relevance for broader populations 

of real-world patients. For instance, the EMPAREG OUTCOME 

RCT focused on Type 2 Diabetes (T2D) patients with established 

Cardiovascular Disease (CVD) and revealed in those 

treated with the sodium-glucose co-transporter-2 (SGLT2) inhibitor 

empagliflozin versus placebo, a significant reduction in the primary 

composite endpoint of a three-point major adverse cardiac event 

(MACE) encompassing CV death, non-fatal myocardial infarction, 

and non-fatal stroke, along with noteworthy reductions in CV death, 

all-cause death, and hospitalization due to heart failure [77]. Another 

RCT, the CANVAS trial, explored the SGLT2 inhibitor canagliflozin, 

and although it included a lower percentage of patients at high CV 

risk than EMPA-REG, it reported a marked reduction in the primary 

composite endpoint of a three-point MACE and the individual 

endpoint of hospitalization for heart failure. However, it did not 

demonstrate a significant benefit concerning CV or all-cause 

mortality alone [78]. Additional real-world studies could provide 

valuable reinforcement and expansion of the RCT findings. For 

instance, the CVD-REAL study, conducted with over 300,000 T2D 

patients, including those both with (constituting 13% of the total) and 

without established CVD, displayed a consistent reduction in 

hospitalization for heart failure, hinting at a tangible real-world 

advantage of the SGLT2 inhibitor drug class in T2D patients, 

irrespective of existing CV risk status or the specific SGLT2 inhibitor 

utilized [79]. 

Criteria have been established to guide the design of observational 

studies, aiming to ensure higher-quality research outcomes. 

Guidelines such as STROBE (STrengthening the Reporting of 

OBservational studies in Epidemiology) offer a standardized 

framework for reporting observational studies. Moreover, extensions 

of the CONSORT guideline specifically target pragmatic trials, 

outlining a reporting checklist encompassing various facets like 

background, participants, interventions, outcomes, sample size, 

blinding, participant flow, and the generalizability of findings. 

Adhering to these criteria not only enhances the quality but also 

bolsters the validity of real-world study data applicable in clinical 

practice. To mitigate confounding effects in observational studies, 

several methodologies have been developed, among which is 

Propensity Score Matching (PSM). PSM aims to enable comparison 

of treatment or management outcomes among similar patients by 

condensing multiple covariates into a single score, referred to as the 

propensity score. This technique allows for comparing outcomes 

across treatment groups of matched patients, potentially minimizing 

issues like selection bias [80]. 

However, despite being a widely used and potent tool, there are 

limitations to the extent to which propensity score adjustments can 

control for bias and confounding variables. An illustration of this 

limitation arises in a comparison between RCT and real-world data 

concerning mortality in severe heart failure patients treated with the 

aldosterone inhibitor spironolactone [81]. While RCT data 

consistently demonstrated reduced mortality, a real-world study 

employing PSM indicated a seemingly heightened risk of death 

associated with spironolactone [82]. However, the authors caution 

against hastily concluding that spironolactone is hazardous based 
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solely on real-world data due to potential unknown biases and 

confounding factors, such as confounding by indication (i.e., biases 

stemming from unmeasured or unaccounted-for factors) [83]. This 

scenario underscores a notable limitation of PSM: it can only 

incorporate variables available within the existing data [84]. 

 

Conclusion 

In conclusion, real-world studies are invaluable complements and 

potential expansions of the insights derived from Randomized 

Controlled Trials (RCTs). While RCTs are the gold standard for 

minimizing bias when assessing medication efficacy and safety, their 

applicability to the diverse population of patients with diabetes in 

natural clinical settings is limited. Real-world studies, being 

conducted within actual clinical practices, offer a more accurate 

assessment of medication effectiveness and safety in the real-world 

context, involving both patients and clinicians. As study designs and 

methodologies continue to improve and data sources become more 

comprehensive, the potential for real-world evidence keeps growing. 

Furthermore, a better understanding of the limitations of real-world 

studies has paved the way for more effective mitigation strategies. 

Real-world evidence generates hypotheses that may warrant further 

investigation through RCTs and provides answers to research 

questions that are often impractical to address solely through RCTs. 

This dual role of real-world evidence can significantly enhance our 

understanding of healthcare interventions, ultimately leading to 

better-informed decision-making and improved patient care in the 

field of diabetes treatment. 
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